
CurveCrafter: A System for Animated Curve Manipulation
Nora S Willett

Pixar Animation Studios
Kurt Fleischer

Pixar Animation Studios
Haldean Brown

Pixar Animation Studios

Ilene L E
Pixar Animation Studios

Mark Meyer
Pixar Animation Studios

Figure 1: With our animation interface, users can edit the shape and opacity of automatically generated silhouette curves
in a temporally consistent manner. In this case, a user changed the shape of the character’s hand lines through editing and
redrawing the curves to emphasize the movement. Towards the beginning and end frames, the user also added laugh lines
under the character’s eye and around the mouth. ©2023 Pixar

ABSTRACT
Linework on 3D animated characters is an important aspect of styl-
ized looks for films. We present CurveCrafter, a system allowing
animators to create new lines on 3D models and to edit the shape
and opacity of silhouette curves. Our tools allow users to draw, re-
draw, erase, edit and retime user created curves. Silhouette curves
can have their shape edited or reverted, and their opacity erased or
revealed. Our algorithm for propagating edits over tracked silhou-
ette curves ensures temporal consistency even as curves expand
and merge. Five professional animators used our system to animate
lines on three shots with different characters. Additionally, the ef-
fects lead from the short film Pete used our system to more easily
recreate edits on a film shot. CurveCrafter was able to successfully
enhance the resulting animations with additional linework.

KEYWORDS
Animation, Creativity support, Silhouette contours

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0132-0/23/10. . . $15.00
https://doi.org/10.1145/3586183.3606792

ACM Reference Format:
Nora S Willett, Kurt Fleischer, Haldean Brown, Ilene L E, and Mark Meyer.
2023. CurveCrafter: A System for Animated Curve Manipulation. In The
36th Annual ACM Symposium on User Interface Software and Technology
(UIST ’23), October 29–November 01, 2023, San Francisco, CA, USA.ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3586183.3606792

1 INTRODUCTION
When determining the look of a film, artists take into account
multiple elements including color, texture, and lines. Line work in
particular is important for defining the shape of characters and
scene elements and directing the viewer’s attention [14]. Multiple
recent 3D animated films incorporate lines into their style. In Pa-
perman, artists draw lines to define the silhouettes of characters as
well as internal features [23]. For Spiderman: Into the Spiderverse,
lines are used as detail elements for facial expressions and special
effects [35]. For painterly looks, lines are useful for clarifying edges
and directing the viewer’s gaze. The Mitchells vs The Machines and
The Bad Guys use colored silhouette lines to emphasize the charac-
ter’s clothing and hair [32, 34]. Pete adds black sketch lines around
characters to offset them from the watercolor background [33]. In
all of these examples, line work is integral to the final look and read
of the characters.

To create these styles, artists used a variety of systems which run
the gamut of 2D vs 3D and manual to automatic. In the 2D space
with more manual interventions, Paperman used Meander [42].
Lines are drawn in 2D for a frame and then moved between frames
using 3D motion data. In The Mitchells vs The Machines, silhouettes
lines are automatically detected in image space on the edges of

https://doi.org/10.1145/3586183.3606792
https://doi.org/10.1145/3586183.3606792

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Willett et al.

characters and rendered in a thick marker style with their color
complementing the source location [15]. Another process is creating
lines directly on the 3D models. The lines in Spiderman were drawn
and rigged in 3D with the line locations initialized by machine
learning [38]. The Bad Guys used a combination of rigged lines
on characters, drawn lines on 3D sets, and image space detected
silhouettes [8, 9]. In Pete, the black outlines are detected in 3D space
on the models and then rendered using brush strokes which are
composited on top of the watercolor rendered backgrounds.

For all of these types of lines, they are either manually drawn or
automatically generated. When automatically generating lines on
3D models, the resulting curves may not be exactly what the artist
intended for that frame. As a result, a system is needed to allow
artists to add, edit or delete automatically generated 3D lines.

To investigate current workflows for fixing auto-generated lines
on multiple frames, we interviewed the effects lead on Pete about
their process (Figure 11). For each shot, 3D silhouette lines were
generated on the characters and props. However, this method re-
sults in artifacts where lines can sometimes appear and disappear
[10]. Since lines are individually generated at each frame, any fixes
on one frame need to be manually performed again on subsequent
frames. For fixes, the lines were brought into the Meander sys-
tem [42] where they were edited. About 70% of the shots in the
6 minutes and 30 second film had manual fixes to the lines. With
8,066 frames, 30 to 40% of those frames were manually edited. The
majority of those fixes (95%) were erasures and the remaining 5%
was a combination of an erase and draw to make a line consistent
across multiple frames. Most of the fixes were on the characters’
faces (nose and jawline) since small changes in facial lines affect
the expression the animator is trying to achieve.

We propose a novel UI, CurveCrafter, which allows users to draw,
edit and erase new lines on 3D models. These lines are deformed
with the model and interpolated between frames. For silhouette
lines on characters, users can deform or erase the lines on one frame,
and the changes will be propagated to nearby frames. Our work-
flow improves the experience and reduces the tedium of manually
editing every frame to fix discrepancies in automatically generated
silhouette lines.

To validate our system, we conducted a user study with five
professional animators on three production shots. We also had the
effects lead on Pete use our system to recreate some of the edits
necessary for the final film. Our examples show comparisons of the
automatically generated silhouettes with the users’ edited versions.

Our contributions are:

• A UI with tools allowing users to edit the shape and opacity
of 3D silhouette curves.

• An algorithm to propagate edits on silhouette curves be-
tween frames improving temporal consistency.

• An evaluation with five professional animators using our
system to create line edits on three shots.

• Comparison of our system to Meander [42] using a shot from
the short film Pete.

In the following sections, we will discuss related work and the
challenges of editing automatically generated silhouette curves.
After describing our UI and how it is implemented, we will share
the findings from the user study and the animated results that were

created. Finally, we use a shot from the short film Pete to compare
our UI to Meander [42] and discuss some limitations and areas for
future improvement.

2 RELATEDWORK
We discuss previous work on sketch based interfaces, line editing
interfaces, silhouette generation, and inbetweening.

2.1 Sketch Based Interfaces
Sketch based interfaces with interactions in 3D fall into two main
categories: those that focus on AR/VR and those that work with 3D
modeling. When sketching in AR, users can utilize a combination of
2D, 3D and mixed reality techniques [3, 31, 44]. For using sketching
to build 3D models, some works are tailored towards novices [4, 28]
while others focus more on interaction techniques involving pen
and hand motions [29]. Most implementations convert 2D drawn
strokes to 3D curves or geometry [19, 24, 41, 45]. Additionally in
sketch based interfaces, there is a strong desire to stylize the strokes
that are created on 3D models [11, 12, 26].

2.2 Line Editing Interfaces
One of the most popular programs for editing lines is Adobe Il-
lustrator which includes a range of functionality for drawing, ma-
nipulating and erasing vector line drawings [2]. However, these
operations are designed to perfect a single image and do not offer
techniques for multiple frames.

Examples of 2D animation systems include ToonBoom’s Har-
mony, TVPaint, andDisney’sMeander. Harmony and TVPaint allow
for a full suite of tools from drawing and editing lines to keyframing,
stroke matching and inbetweening [17, 40]. Meander is a hybrid

Figure 2: Interface for the curve editing system. (a) The 3D
viewer. (b) The pose editor. (c) Menu to create silhouette
curves. (d) In order from left to right: Draw Tool, Erase Tool,
Reveal Tool, Edit Tool, Revert Edit Tool, RetimingTool. ©2023
Pixar

CurveCrafter: A System for Animated Curve Manipulation UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

of a 2D animation system with 3D input [42]. Artist-drawn curves
from a starting frame are advected to subsequent frames using a
vector field calculated from the motion of underlying 3D models.
Then, the artist can choose curves on subsequent frames to edit and
fix. Because curves are advected and edited on subsequent frames,
there is a direct correspondence between curves on different frames
enabling matches for inbetweening.

In 3D software, Blender has implemented the Grease pencil ob-
ject which allows users to draw and edit 3D curves [1]. Ways to
expand the Grease Pencil structure to allow for inbetweening have
also been explored [22]. Other 3D drawing systems include Dream-
works’ Squiggles which allows static curves to be drawn on 3D
models [8, 9].

Our system works with 3D curves and allows for interactivity
when drawing and editing curves. It also incorporates inbetweening,
and propagates edits between frames for automatically generated
silhouette curves. For the interpolation of silhouette curve edits, we
are unaware of previous work in academia or industry that solves
this problem.

2.3 Silhouette Generation
Before editing, silhouette curves must be detected over 3D objects.
Some techniques generate these curves from a 2D rasterized image
based on edge filters [5, 20, 25, 27]. Other techniques use the 3D
geometry as input to create 3D curves [6]. A survey by Bénard
and Hertzmann provides a more in depth discussion of different
silhouette generation methods [10].

2.4 Inbetweening
Inbetweening is a challenging problemwith two parts, strokematch-
ing and interpolation. An early work by Reeves compares three
different algorithms for inbetweening [36]. Kort et al.uses stroke
chains for matching and artistic control of the interpolation timing
[30]. A more specific case of similar keyframes was explored by
Whited et al.[43]. If using vector graphics, Dalstein et al.introduce
a new data structure to support merging, splitting, appearing and
disappearing of strokes [16]. For cases that are slightly more com-
plicated than only 2D, Rivers et al.explore inbetweening in the 2.5D
space [37].

Figure 3: (a) Drawing a new curve with (b) the default projec-
tion or (c) projection to the surface. ©2023 Pixar

3 EDITING AUTO-GENERATED CURVES:
CHALLENGES

When interpolating or propagating lines edits between frames, a
critical component is stroke correspondences across frames. Stroke
matching can be solved in a variety of ways. For strokes drawn at
one frame and edited at others, there is an inherent correspondence.
This method is the one that we use for matching. For strokes drawn
at different frames, some algorithms attempt stroke matching but
this process usually requires the changes in stroke shape to be
minimal [43]. For curves automatically generated from 3D models,
the curves are advected based on mesh movements in order to
create correspondences between frames [7].

When adding linework to animation, it is very labor intensive
for artists to manually draw all the silhouette and accent lines on
a 3D character. Computing those lines automatically saves artists
effort but traditionally limits the ability for control.

One challenge of editing automatically generated curves is their
frame density. These curves are calculated and keyframed at ev-
ery frame during the animation. In other systems, the curve are
sparsely populated only on keyframes with intermediate frames
interpolated. For our application of auto-generated curves, only
edits and erasures have sparse keyframes whereas the curves being
manipulated are keyed at every frame.

Due to these constraints, we propose a novel UI system which
enables artists to edit automatically generated silhouette curves.

4 USER INTERFACE
Our system expands on UI elements native to traditional 3D ani-
mation software. We incorporate a pose sheet to display and edit
keyframes and a 3D viewer to display 3D models and curves (Figure
2). The pose sheet shows the keyframes of different edits and curves,
allowing the viewer to delete or retime curve animations (Figure
2b). The 3D viewer enables the user to manipulate the viewing
angle and contains multiple predefined camera positions (Figure
2a). The options for interacting with curves on a model are located
at the top of the viewer. Under the Create menu, one option allows
users to enable editing on a selected model (Figure 2c). The other
option automatically creates silhouette curves for the model and
viewer’s camera position given the current frame range. A title bar
contains the tools for editing the curves (Figure 2d). The Draw
Tool allows users to create curves, or replace a curve by redrawing
its shape (Figure 3a and 4a), while the Erase Tool removes curves
(Figure 4c and 5e). The Edit Tool enables a manipulative widget,
similar to the one available in Meander [42], for editing the shape
and position of the curves. Arcs on the side allow for rotation while
the bounding box controls transformation and scaling. Clicking di-
rectly on the curve introduces a knot which enables more controlled
deformations (Figure 4b and 5b).

To edit automatically generated silhouette curves, two additional
tools are introduced. With the Reveal Tool, any invisible curve
parts are shown with a pink line so they are easily detectable to be
brushed over and revealed (Figure 5f). To undo a deformation of a
curve, the user brushes over the curve with the Revert Edit Tool
which slowly pushes the curve shape back to the original silhouette
curve (Figure 5d).

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Willett et al.

Figure 4: User created curves (a) The user draws curves at frame 1 and they are deformed with the mesh on subsequent frames.
(b) With the edit tool, the user changes the curve shape at frame 15. Notice how the interpolated curves at frames 5 and 10
differ from the initial curves in (a). (c) The user erases part of a curve at frame 20. Watch the curve shrink in frames 5, 10, and
15. ©2023 Pixar

Other features include the Retiming Tool which, in conjunc-
tion with the pose sheet (Figure 2b), allows users to change the
keyframes for the selected curves.

See the accompanying video for each tool’s interactions.

5 IMPLEMENTATION
To store the curve data, we create a hierarchy consisting of sketches,
curves and animated points. Sketches are keyed at individual frames
and contain references to curves. A curve can belong to multiple
sketches and stores the connectivity of animated points, allowing
the positions along a curve to change between sketches. Curves
also store an id to create a correspondence for interpolation. An
animated point can belong to multiple curves and stores a mapping
of sketches to position data. At runtime, the display position of
the animated point is calculated from the deformed mesh based on
a face id, UV coordinate and offset. With this structure, sketches
correspond to a single frame, while curves and animated points can
span multiple frames allowing points to be consistent across curve
topology and sketches at different frames.

For all the interactions, the user’s input is in 2D image space
(Figure 3a) while the stored data is in 3D relative to the mesh. The
3D positions are calculated by casting rays from the 2D image space
point to intersect with the selected 3D mesh. If the ray interests
the mesh, the 3D position is stored using the mesh face id, UV
coordinates and offset in relation to the face’s normal (in this case,
a vector close to zero length). If no intersection occurs, the user can
choose two projection options.

In one option, Off surface projection (the default), the point’s
distance from the camera is copied from the closest point to the
2D mesh’s silhouette (Figure 3b). Distances are smoothed along the
curve to avoid sharp jumps when switching between closest mesh
positions (i.e., from being close in 2D to a foot and then to a hand).
With the camera distance, the 3D world point is calculated and the
closest face on the 3D mesh is stored along with the UV and vector
offset.

For the other projection option, Stick to surface, the calculation
of the 3D world point is the same as above. However, to ensure that
the points stick to the mesh surface, the offset is set to zero, forcing
the point to lie on the closest mesh face (Figure 3c).

Our interface, which was implemented inside of Pixar’s Presto
animation system [39], allows animators to interact with user
created curves and automatically generated curves using the same
UI interactions. However, on the backend, we store and interpret
the data in slightly different ways.

5.1 User Created Curves
To create a new curve, the Draw Tool generates curves with new
points for each drawn stroke. The type of projection (Off surface or
Stick to surface) used for each curve is set at this stage (Figure 3). All
curves drawn at a frame are contained within a single keyframed
sketch. Drawn curves at different frames are not matched for inter-
polation.

When editing a curve, the user can redraw or deform it. For
redrawing, the old curve is replaced with the new drawn shape. For

CurveCrafter: A System for Animated Curve Manipulation UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 5: Auto-generated curves (a) The automatically generated silhouette lines. (b) The user edits the shape of a curve on
frame 2 and the edit is geometrically and temporally interpolated on subsequent frames. (c) If our geometric interpolation
method is not used, the curve has lots of gaps and jaggies (frames 1, 4, 5, 6). (d) The user can brush over areas to revert some
edits such as removing a bump on frame 5. The offsets are interpolated on frames 3 and 4 to shrink the bump over time. (e)
With the erase brush, the user can make some curves disappear on frame 1. (f) The reveal brush shows which areas can be
made visible in pink and lets the user brush over them to make them reappear in frame 4. ©2023 Pixar

deforming the old curve, the edit widget defines the deformation
based on the rotation, transformation or scaling. If knots are used
to change the shape, we use a Catmull-Rom spline [13] to calculate
offsets for a single selected curve and as-rigid-as possible curve
editing to calculate the new shape of multiple selected curves [21].
After deformation, a new curve with new points (not necessarily

the same number as before) is created at the frame (Figure 4b).
However, the new curve’s interpolation id matches the old curve,
creating a correspondence for inbetweening.

To erase strokes, we search for points within a given brush radius
in 2D image space. If the points erased are at the ends of the curve,
we shorten the curve by deleting those points (Figure 4c). If the

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Willett et al.

Figure 6: Expanding automatically generated curves: The
original curves are represented in black with labeled ani-
mated points. The user sets keyframed offsets in red for
frame 1 and 3 by editing the curves. When expanding the
curve on frame 2, our method geometrically interpolates off-
sets values from both frames (green and blue curves) and
then temporally interpolates for the final orange curve. If
the keyframed values are naively copied, the result is not
temporally coherent.

erased points are in the middle, the existing curve is shortened from
one end and new curves are created for the other visible parts. If a
curve is completely erased at a frame, a curve with zero points and a
matching interpolation id is saved to ensure correct inbetweening.

To calculate which curves to display at any given frame, each
unique interpolation id is considered separately and the closest
keyframes to the display frame are recorded. If there is a keyframe
at the display frame or only one closest keyframe, either before or
after the display frame, that curve is displayed from the deformation
of the mesh. If the display frame is between two keyframes, each
curve is deformed by the display frame’s mesh, sampled to contain
the same number of points (we use the maximum of the two curves’
point counts), and then points are linearly interpolated. If one curve
has zero points meaning it was erased completely, the other curve
is displayed. See Figure 4 for interpolation results with various edits
and erasures.

5.2 Auto-generated Curves
Our automatically generated curves, represented as 3D polylines,
are extracted from the surface mesh using a combination of tech-
niques informed by Bénard and Hertzmann [10]. We generate
silhouette curves by tracing the zero levelset of the dot product
between normals at mesh vertices and the view direction [20] (Fig-
ure 5a). Once visible curves are calculated at each frame, we need
to determine where points from the current frame move to in the
next one. This tracking allows for an animated point at the first
frame to change positions and curve connectivity over time en-
suring deformations and visibility edits are consistent. To create
correspondences between different frames, we advect the curves in
3D from the previous frame based on the mesh movement between
frames [7]. When the corresponding projected 2D image space
curves are close together, we update the previous points’ positions
to lie on the current curve, using nearest neighbor and tangent
similarity. For any parts of current curves that are not covered by
curves from the previous frame, we introduce new points to display
those areas.

When editing the curves, we keyframe a deformer that stores
the ids of the edited animated points and the global offsets in 3D

Figure 7: Merging automatically generated curves: The origi-
nal curves are represented in black with keyframed offsets in
red. When merging curves, directly copying the keyframes
and expanding the values along the curve ends results in a
jump between frames. Since points 5 and 6 belong to a sep-
arate curve on frame 1, during our geometric interpolation
method, the offset value from point 4 is not copied to points
5 and 6.

(Figure 5b). Next, we need to handle how a deformation is inter-
polated across multiple frames for smooth temporally coherent
results. As curves expand, contract and merge, the number of points
changes. Therefore, points may only exist on one of the keyframes
and directly interpolating offsets for each point will result in jaggies
and divots where there is no offset to interpolate (Figure 5c). Our
innovation is the proposal of an algorithm that produces pleasing
temporal results which align with what animators would expect.
Our system deals with the cases of expansion and merging of curves
slightly differently.

The first case to consider is a curve expanding (Figure 6). If a
point has an offset keyframed at the current frame, that value is
used. For all other points along a curve, we store the previous and
next keyframes and their offsets. Then, we need to calculate the
offset values for each point at the current frame. Using the curve
topology for the current frame, we geometrically interpolate along
the curve the offset values separately for the previous frame (Figure
6, Frame 2 (Ours) green) and then the next frame (Figure 6, Frame
2 (Ours) blue). For geometric interpolation, points at the ends of
curves are treated differently than those in the middle. For points
in the middle, the offsets are linearly interpolated. For points on
the end, the offset values of any new points are copied from the last
keyframed point on the curve. Then, we temporally interpolate the
offset values resulting in the final temporally consistent displayed
curve (Figure 6, Frame 2 (Ours) orange).

In the second case of curves merging, the end points belonging
to a curve at any frame which does not share topology with the
keyframed points are not geometrically interpolated and have zero
offset. This method ensures that a separate curve with no defor-
mations stays that way even if it merges with a curve that has
deformations applied. Otherwise, a jump will occur at the merged
frame as the offset is extended to the “new" points of the curve
(Figure 7).

When using the Revert Edit Tool, a brush stroke shrinks the
affected offset vectors by 0.1 until there is zero offset (Figure 5d).

To erase auto-generated points, we keyframe the brushed over
points’ opacities at the current frame to zero. Additionally, the
Reveal Tool keyframes the opacities to one. Similarly to how
offsets are calculated for display, the opacities are also geometrically
and temporally interpolated (Figure 5e,f).

CurveCrafter: A System for Animated Curve Manipulation UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 8: In shot 1, the user changed the shape of the arm’s silhouette. ©2023 Pixar

6 USER STUDY
To test our UI in a production setting, we gathered feedback from
five professional 3D animators with an average of 15.8 years (6.5 std
dev) of experience in 3D and 6 years (6.4 std dev) of experience in
2D. After demonstrating all the UI tools including interacting with
user created and automatically generated curves, the participants
were presented with a different character to experiment on. They
were encouraged to use the tools to add decorative elements which
would enhance the animation as well as edit the silhouette curves.
All silhouette curves were generated, tracked and loaded before
the animators worked on their shots. Overall, the demonstration
session lasted 20 minutes while animators spent an average of 96
minutes (52 std dev) working on their shot. Each participant created
a single result on one of three characters.

In general, users found our tool exciting to use and intuitive
to draw and edit directly on the model. They were pleased with
the animations created and envisioned using this tool for drawing
details on cloth and faces, adding effects, and fixing silhouette lines
around the face. Animators could indicate folds in the cloth that
could be passed to the simulation department. They appreciated
being able to add details to the face to refine and push the appeal
of the characters’ expressions. Other uses include creating effects
such as cloud puffs, surprise marks, or bubbles.

Users liked the speed and ease of the draw and redraw functional-
ity and used it extensively to refine the shapes of curves. Workflows
included drawing a curve multiple times until the exact shape was
achieved or redrawing an interpolated deformed curve on a differ-
ent frame to better match a desired shape. When using the erase
tool, animators requested that erased user generated curves behave
more like erased silhouette curves so that the reveal tool can work
on both types. This change would allow animators to erase parts
or all of a curve at a frame and then make the exact curve reappear
later. Additionally, animators wanted control over the brush size.

For the retiming tool, animatorswanted the ability to see keyframes
in a spline editor as well as the pose sheet. This additional view
would allow more flexibility and transparency into how keyframes

are held and interpolated (using splines controlled by the animator
instead of our default linear option).

Another general request from one user was a more streamlined
selection of curves. Currently, each tool that requires a curve to be
selected (redraw, edit, retiming), has its own selection inside the
tool before the operation can take place. With a single persistent
selection tool, subsequent actions would know which curve to act
on.

When editing the silhouette curves, the animators used a combi-
nation of the edit tool to change the shape of the curves and the
erase and draw tool to completely redraw the curves. Many users
expressed the desire for the redraw functionality of the draw tool
to also work on silhouette curves instead of just user drawn curves.
When using the revert tool, users had several suggestions. They
wanted to change the strength and size of the brush in order to
have more control over how it returns curves to the original sil-
houette. One user also suggested a hotkey to quickly snap a curve
back to its original shape. Two users mentioned that having some
indicator of which curves are deformed and how much would be
nice. When using the reveal tool, three users mentioned combining
this tool with the erase tool to allow users to directly set the opacity
of curves.

All animators suggested the addition of a smoothing tool. This
option could be used to brush over drawn or edited curves to remove
small bumps or jaggies.

Two animators mentioned that they envisioned using the silhou-
ette edits to change the underlying geometry. They would use the
drawn and edited curves to quickly pose the 3D character similar
to a process used on Inside Out [18].

7 RESULTS
Users worked on three shots featuring a single different character
in each. Refer to Table 1 for the time that each user spent on their
shot and the percentage of frames that were edited. Please see the
accompanying video for all user created results.

The first shot, lasting 138 frames, has a character walking and
then turning around in surprise (Figure 8). The character has 26,892

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Willett et al.

Figure 9: In shot 2, both users edited the eye shapes and added puffs at the back as the character flies away. ©2023 Pixar

faces and it took 57 minutes and 29 seconds to generate and track
the silhouettes (average 24 seconds per frame). The frames have an
average of 25 curves with a standard deviation of 5.19. The animator
used our system to refine the curves indicating the arm shapes as
the character bends backwards. They achieved their edits in two
ways. For some frames, they used the edit to tool change the shape
of the silhouette arm curves. In another instance, they erased the
arms’ silhouettes and redrew the curves themselves.

In the second shot (63 frames), the character looks around, puffs
up and then flies away (Figure 9). The character has 55,264 faces and
silhouette generation and tracking took 78 minutes and 49 seconds

Shot 1 Shot 2 Shot 3
Users 1 2 3 4 5
Time spent on task (minutes) 50 90 150 40 150
User created keyframes 9% 22% 62% 12% 31%
Unique curves 10 63 8 4 12
Silhouette shape keyframes 6% 3% 5% 14% 23%
Silhouette opacity keyframes 4% 11% 73% 0% 16%

Table 1: Summary of users’ interactions with our system on
a variety of shots.

(average 75 seconds per frame). The frames have an average of 51
curves with a standard deviation of 3.99. Both animators editing this
shot focused on the character’s face. One drew extra lines around
the eyes, eyebrows and cheeks. Another mainly focused on the lines
around the eyes. They erased the silhouette generated eye lines on
most frames and redrew them. Both animators added bubbles at
the end of the character as they fly off the screen.

In the final third shot, the character hesitantly reaches out and
back (110 frames) (Figure 10). The character and dress have 79,503
faces and it took 93 minutes and 23 seconds to generate and track
the silhouettes (average 50 seconds per frame). The frames have
an average of 47 curves with a standard deviation of 4.54. One
animator pulled the silhouette at the back of the character’s dress
and head out in order to create a bubble that breaks off and floats
away. The other animator focused on the hand shapes and added
details around the face (Figure 1). They drew extra wrinkle lines
under the eyes and in the corner of the mouth, using the tools to
make the lines appear, grow, shrink and then disappear. To change
the hand shapes to overshoot the motion, they used a combination
of editing the silhouette lines and redrawing the lines for more
control around the finger shapes.

CurveCrafter: A System for Animated Curve Manipulation UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 10: In shot 3, user 5 makes a bubble break away from the character’s back and head silhouette. User 6 changes the hand
and arm silhouette lines to emphasize the reaching motion. ©2023 Pixar

8 USE ON A SHORT FILM
To compare our system directly to existing workflows, we asked
the effects lead on Pete to redo a shot from the film using our tool
(Figure 11). The production pipeline exported the animation to
Houdini to generate silhouette curves and then, the curves were
transfered to the Meander system [42] where each frame was edited
and rendered. Using our UI, the silhouette curves are created and
edited inside of the animation software. They are then exported to
Houdini for additional stylization processing and then to Meander
for rendering.

To test the effectiveness of our system, the effects lead chose a
shot which required significant erasures and edits of the silhou-
ette lines. The shot (123 frames, 57,880 faces, average 33 silhouette
curves per frame) features a close up of Pete slightly nodding while
smiling and blinking. The fixes to the silhouette lines include reduc-
ing flickering in the instances of a hat line gap and the armpit lines.

Other fixes focused on closing the gap on the chin, and removing a
part of the left ear line to fix the occlusion with some hair strands.

To achieve all of these fixes in Meander, all 123 frames needed
editing to erase the hat line gap and ear overlap using the erase
brush. The armpit lineswhere not removed due to the tedious nature
of selecting and deleting them on every frame. While Meander does
offer the capability to add lines per frame by drawing with a pen,
this method was only used rarely on single frames. Due to the
stylization method of the lines, which included procedurally adding
line wobble and pressure, recreating a consistent technique when
drawing was nearly impossible to ensure temporal coherence.

For both Meander and CurveCrafter, the effects lead spent 40
minutes making changes to the shot. However, with our more
powerful tool, the edits were less tedious and allowed the effects
lead to accomplish more, such as erasing the armpits and drawing
lines on the hat and chin. In both systems, the majority of the
time was spent flipping through frames to see how the edits look

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Willett et al.

Figure 11: In a shot from Pete, we compare the edits from our
UI to the original silhouettes and the edits done in Meander.
For the armpits, our UI was used to erase the lines. However,
those lineswere not erased in the original filmusingMeander
because the process was too tedious. On the character’s chin,
our systemwas used to draw a line closing the gap. Drawing a
line to close the chin gap in Meander was not possible due to
difficulties matching the pen pressure over multiple frames.
For the ear line, our UI was able to erase it with one keyframe
while the effects lead had to edit every keyframe to erase the
line with Meander. For the hat, Meander was used to erase
a portion to remove some flickering. With our system, the
hat line was erased and then redrawn. Additionally, an extra
line was added at the hat brim. ©2023 Bret Parker

Figure 12: Limitation (a) Drawing a curve to accentuate the
curve of the arm. (b) The curve is projected onto the belly
which will result in unpleasant deformations on subsequent
frames. ©2023 Pixar

in motion since neither system played back in realtime. Another
benefit is that with less keyframes in our system, future edits to
curves and their timing are easier to accomplish.

When using CurveCrafter, 43% less keyframes were need for
erasing curves. Erasing the armpit lines required 70 keyframes
while fixing the ear overlap only required a single keyframe. The
large difference in keyframes needed for the various areas is due
to the calculated line tracking. The armpit lines are not very tem-
porally consistent since they reside in a crease area, and hence
tracking is difficult between frames as small line bits appear and
disappear. The ear line is very consistent across the whole shot
and hence the tracking is able to easily propagate edits. To fix the
flickering in the hat gap, a part was erased (10 keyframes) and two
new lines were drawn on a single keyframe, one in the hat top
and another along the bill. To close the chin gap, three keyframes
were used to erase the end parts of the lines to make them more
consistent. Then, a new line was drawn on one frame and edited on
another to fill in the gap. Because our curves are drawn and saved
in 3D, they can be fed into the procedural process which determines
the stylized line wobble and pressure characteristics. This option
enables the easy addition of new silhouette lines where they were
previously missing. The effects lead commented that “it is easy to
add lines which is super nice."

In summary, our UI and algorithm for propagating opacity and
edits of silhouette curves produced significantly less keyframes for
erasing curves and enables the addition of temporally consistent
curves which was not previously possible with the given style in
Meander.

Please see the accompanying video for the shot and its compar-
isons.

9 LIMITATIONS AND FUTUREWORK
Through interacting with our system, users encountered areas for
future development.

When editing silhouettes tomake a temporally consistent change,
the number of keyframes is heavily dependent on the quality of the
silhouette curve correspondences over time. One user struggled
with erasing all the lines around the eyes, having to touch 73%
of the frames. The eyes were a particularly challenging example
for tracking due to the silhouette lines disappearing in some parts
when the eyeball mesh obscures the eye socket silhouette. Higher
quality silhouette detection and curve tracking would allow for less
clean up work for animators.

CurveCrafter: A System for Animated Curve Manipulation UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Another limitation of the current system is that the silhouettes
and their subsequent user edits are tied to the character’s animated
pose. If animators change the pose, new silhouette curves with dif-
ferent tracking information would need to be computed. Without
a way to automatically transfer the user edits, all of their work
would have to be redone. Smoothing out the workflow between an-
imating a character’s pose, generating silhouettes in real time, and
keeping consistent user edits would greatly improve the system’s
interaction and conform to animators’ desired workflow.

Animators encountered some struggles when projecting the
curves onto the surface and having them deform. One instance
is when drawing the silhouette of an arm crossed over the body
(Figure 12a). When projecting the drawn curve, parts of the line
project to the armwhile others stick to the stomach area (Figure 12b).
When the curve is deformed on subsequent frames, the resulting
shapes are not what the animator intends and redraws are required
at every frame.

10 CONCLUSION
We have presented CurveCrafter, a UI which allows animators
to edit automatically generated silhouette curves while ensuring
temporal consistency of those edits between frames. Additionally,
users can draw, edit and erase their own 3D created curves which
deform and interpolate over the 3D animation. With these features,
CurveCrafter gives direct and easy control back to animators over
the stylized lines in films.

REFERENCES
[1] Grease pencil introduction. Blender Docs (2022).
[2] Adobe. Illustator, 2022.
[3] Arora, R., Habib Kazi, R., Grossman, T., Fitzmaurice, G., and Singh, K. Symbiosiss-

ketch: Combining 2d & 3d sketching for designing detailed 3d objects in situ. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(2018), 1–15.

[4] Bae, S.-H., Balakrishnan, R., and Singh, K. Everybodylovessketch: 3d sketching
for a broader audience. In Proceedings of the 22nd annual ACM symposium on
User interface software and technology (2009), 59–68.

[5] Ben-Zvi, N., Bento, J., Mahler, M., Hodgins, J., and Shamir, A. Line-drawing video
stylization. In Computer Graphics Forum, vol. 35, Wiley Online Library (2016),
18–32.

[6] Bénard, P., Hertzmann, A., and Kass, M. Computing smooth surface contours
with accurate topology. ACM Transactions on Graphics 33, 2 (2014), 1–21.

[7] Bénard, P., Jingwan, L., Cole, F., Finkelstein, A., and Thollot, J. Active strokes:
Coherent line stylization for animated 3d models. InNPAR 2012-10th International
Symposium on Non-photorealistic Animation and Rendering, ACM (2012), 37–46.

[8] Budsberg, J., Valle, P., and de Guzman, P. Building an illustrated world in the bad
guys. In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Talks (2022), 1–2.

[9] Budsberg, J., Valle, P., Sans, J., Costello, M., Augello, N., and de Guzman, P. Graphic
2d-inspired characters in the bad guys. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Talks (2022), 1–2.

[10] Bénard, P., and Hertzmann, A. Line drawings from 3d models: A tutorial. Foun-
dations and Trends® in Computer Graphics and Vision 11, 1-2 (2019), 1–159.

[11] Cardona, L., and Saito, S. Hybrid-space localized stylization method for view-
dependent lines extracted from 3d models. In NPAR@ Expressive (2015), 79–89.

[12] Cardona, L., and Saito, S. Temporally coherent and artistically intended stylization
of feature lines extracted from 3d models. In Computer Graphics Forum, vol. 35,
Wiley Online Library (2016), 137–146.

[13] Catmull, E., and Rom, R. A class of local interpolating splines. In Computer aided
geometric design. Elsevier, 1974, 317–326.

[14] Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H. S., Finkelstein, A., Funkhouser,
T., and Rusinkiewicz, S. Where do people draw lines? In ACM SIGGRAPH 2008
papers. 2008, 1–11.

[15] Conference, S. The handmade look of ‘the mitchells vs. the machines’. ACM
Siggraph Blog (2021).

[16] Dalstein, B., Ronfard, R., and van de Panne, M. Vector graphics animation with
time-varying topology. ACM Trans. Graph. 34, 4 (July 2015).

[17] Développement, T. Tvpaint animation.
[18] Fleischer, K., Isaacs, P., Parker, B., Haux, B., Shen, S., Krishna, V., Shen, C., Butts, A.,

Price, J., Hahn, T., et al. Silhouette sketching on "inside out". In ACM SIGGRAPH
2015 Talks. 2015, 1–1.

[19] Grimm, C., and Joshi, P. Just draw it! a 3d sketching system.
[20] Hertzmann, A., and Zorin, D. Illustrating smooth surfaces. In ACM SIGGRAPH

(2000), 517–526.
[21] Igarashi, T., Moscovich, T., and Hughes, J. F. As-rigid-as-possible shape manipu-

lation. ACM transactions on Graphics (TOG) 24, 3 (2005), 1134–1141.
[22] Ilene, E., Willett, N. S., and Finkelstein, A. 2.5 d simulated keyframe animation

in blender. In 34th Annual ACM Symposium on User Interface Software and
Technology, UIST 2021, Association for Computing Machinery, Inc (2021), 35–36.

[23] Kahrs, J. Paperman, 2012. Walt Disney Animation Studios.
[24] Kallio, K. 3d6b editor: projective 3d sketching with line-based rendering.
[25] Kalnins, R. D., Davidson, P. L., Markosian, L., and Finkelstein, A. Coherent

stylized silhouettes. ACM Transactions on Graphics 22, 3 (2003), 856–861.
[26] Kalnins, R. D., Markosian, L., Meier, B. J., Kowalski, M. A., Lee, J. C., Davidson,

P. L., Webb, M., Hughes, J. F., and Finkelstein, A. Wysiwyg npr: Drawing strokes
directly on 3d models. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques (2002), 755–762.

[27] Karsch, K., and Hart, J. C. Snaxels on a plane. In Proceedings of the Symposium
on Non-Photorealistic Animation and Rendering (2011), 35–42.

[28] Kazi, R. H., Grossman, T., Cheong, H., Hashemi, A., and Fitzmaurice, G. W.
Dreamsketch: Early stage 3d design explorations with sketching and generative
design. In UIST, vol. 14 (2017), 401–414.

[29] Kim, Y., An, S.-G., Lee, J. H., and Bae, S.-H. Agile 3d sketching with air scaffolding.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(2018), 1–12.

[30] Kort, A. Computer aided inbetweening. In Proceedings of the 2nd international
symposium on Non-photorealistic animation and rendering (2002), 125–132.

[31] Kwan, K. C., and Fu, H. Mobi3dsketch: 3d sketching in mobile ar. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (2019), 1–11.

[32] Michael Rianda, J. R. The mitchells vs the machines, 2021. Sony Pictures Enter-
tainment.

[33] Parker, B. Pete, 2022.
[34] Perifel, P. The bad guys, 2022. DreamWorks Animation.
[35] Persichetti, B., Ramsey, P., and Rothman, R. Spider-man: Into the spider-verse,

2018. Sony Pictures Entertainment.
[36] Reeves, W. T. Inbetweening for computer animation utilizing moving point

constraints. ACM SIGGRAPH Computer Graphics 15, 3 (1981), 263–269.
[37] Rivers, A., Igarashi, T., and Durand, F. 2.5 d cartoon models. ACM Transactions

on Graphics (TOG) 29, 4 (2010), 1–7.
[38] Seymour, M. Ink lines and machine learning. fxguide (2019).
[39] Studios, P. A. Presto, 2023.
[40] ToonBoom. Harmony21, 2021.
[41] Tsang, S., Balakrishnan, R., Singh, K., and Ranjan, A. A suggestive interface for

image guided 3d sketching. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems (2004), 591–598.

[42] Whited, B., Daniels, E., Kaschalk, M., Osborne, P., and Odermatt, K. Computer-
assisted animation of line and paint in disney’s paperman. In ACM SIGGRAPH
2012 Talks. 2012, 1–1.

[43] Whited, B., Noris, G., Simmons, M., Sumner, R. W., Gross, M., and Rossignac, J.
Betweenit: An interactive tool for tight inbetweening. In Computer Graphics
Forum, vol. 29, Wiley Online Library (2010), 605–614.

[44] Xin, M., Sharlin, E., and Sousa, M. C. Napkin sketch: handheld mixed reality 3d
sketching. In Proceedings of the 2008 ACM symposium on Virtual reality software
and technology (2008), 223–226.

[45] Xu, P., Fu, H., Zheng, Y., Singh, K., Huang, H., and Tai, C.-L. Model-guided 3d
sketching. IEEE Transactions on Visualization and Computer Graphics 25, 10 (2018),
2927–2939.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sketch Based Interfaces
	2.2 Line Editing Interfaces
	2.3 Silhouette Generation
	2.4 Inbetweening

	3 Editing Auto-generated Curves: Challenges
	4 User Interface
	5 Implementation
	5.1 User Created Curves
	5.2 Auto-generated Curves

	6 User Study
	7 Results
	8 Use on a Short Film
	9 Limitations and Future Work
	10 Conclusion
	References

